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Società Italiana di Fisica
Springer-Verlag 1999

Stretching DNA: Role of electrostatic interactions
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Abstract. The effect of electrostatic interactions on the stretching of DNA is investigated using a simple
worm like chain model. In the limit of small force there are large conformational fluctuations which are
treated using a self-consistent variational approach. For small values of the external force f , we find the
extension scales as frD where rD is the Debye screening length. In the limit of large force the electrostatic
effects can be accounted for within the semiflexible chain model of DNA by assuming that only small
excursions from rod-like conformations are possible. In this regime the extension approaches the contour
length as 1/

√
f where f is the magnitude of the external force. The theory is used to analyze experiments

that have measured the extension of double-stranded DNA subject to tension at various salt concentrations.
The theory reproduces nearly quantitatively the elastic response of DNA at small and large values of f
and for all concentration of the monovalent counterions. The limitations of the theory are also pointed out.

PACS. 36.20.-r Macromolecules and polymer molecules – 61.25.Hq Macromolecular and polymer solutions;
polymer melts; swelling – 87.15.By Structure and bonding

1 Introduction

The technical advances in the manipulation of single
molecules has enabled the probe of mechanical and relax-
ational measurement in both equilibrium [1,2] and non-
equilibrium conditions [3]. Among the first of such ex-
periments was the investigation of the elastic response of
λ - bacteriophage DNA (λ DNA) molecules subject to
tension [1]. These experiments and others have offered a
window into the behavior of biological molecules on scales
ranging from several nanometer to few microns. They also
provide an opportunity to understand the limits of valid-
ity of theories based on generic polymer models such as
Edwards model or simple model of semiflexible chain such
as the worm like chain (WLC) model [4].

The earliest theories describing the elastic response of
WLC subject to tension, which are relevant to the experi-
ments of Smith et al. [1], were due to Fixman and Kovac [5]
and Crabb and Kovac [6]. The precise experiments made
possible by nanomanipulation of single molecules [1,2]
has demanded more accurate theories. In these experi-
ments the response to a constant force on a magnetic bead
attached to λ DNA in a solution of varying salt concentra-
tion is used to probe DNA elasticity. After these pioneer-
ing experiments were reported several theoretical stud-
ies followed [7–9]. These papers showed that, when the
salt concentration is sufficiently large, the simple WLC
model subject to tension quantitatively reproduces the
force-extension curves. In particular, the asymptotic ap-
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proach to full extension at large force, was shown to follow
the f−1/2 law, where f is the external force.

Since DNA is highly charged one expects counterion
effects to be extremely important in determining the elas-
ticity. It has recently been established that the elastic re-
sponse and persistence length of DNA greatly depend not
only on the salt concentration but also on the valence and
shape of counterions [10]. As in the case of simple polyelec-
trolytes, systematic theories of DNA subject to tension is
difficult due to the presence of several competing length
scales. In particular, at intermediate values of the exter-
nal force, the interplay of several forces, namely intrinsic
persistence length, electrostatic repulsion, counterion con-
densation, all conspire to determine the conformation of
DNA.

Marko and Siggia [8] included the effects of electro-
static interaction, within a WLC picture of DNA by re-
placing the intrinsic persistence length by a scale depen-
dent effective persistence length [11]. Such a description
implicitly assumes that the intrinsic persistence length
is large, and hence only small excursions in DNA from
rod-like conformations are tolerated. The interaction be-
tween the charges is assumed to obey the Debye-Hückel
potential, VDH(r) = lBe−κr/r. The ionic strength of the
solution I is related to the screening length rD = κ−1

through the relation κ2 = 4πlBI, and the Bjerrum length
lB = e2/(εkBT ) represents the strength of interaction. The
scale dependent effective persistence length leff

p varies from
l0 + lOSF (in length scale r � rD) to l0 (r � rD), where
lOSF = lB/4κ2A2 [12,13] with A being the mean distance
between charges. Marko and Siggia considered the limit
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when the applied force is so large that the angle fluctu-
ation of tangent vector with respect to the direction of
applied force is small which in consistent with the assump-
tion of the OSF theory [12,13]. The chain extension z in
the presence of tension approaches L like f−1/2, in good
agreement with experiment at large force. However, when
the conformation of DNA is coil-like (at small force) the
theory shows deviation from experimental results.

In order to probe the effects of electrostatic interac-
tions at small values of f and I we suggest a mean field
variational approach. The mean field model of semiflex-
ible chains [14,15] successfully describes the conforma-
tions of the stretched DNA by a constant force at high
salt concentration, where the electrostatic interactions are
negligible [9]. In this model, the hard constraint on tan-
gential vector u2(s) = 1 is replaced by a global constraint
〈u2(s)〉 = 1 so that the average of the magnitude of a
tangential vector u(s) is fixed even if the magnitude of
tangential vectors fluctuate. This theory provides contin-
uous crossover formula for the extension from the small
force limit to the large force limit. In small force limit the
extension z increases linearly whereas in large force limit
the f−1/2 rule is found. The theory also reproduces quan-
titatively the experimental force-extension curves at high
salt concentration.

In this paper, we include electrostatic interactions in
the mean field model of semiflexible chain. This approach
provides an adequate theory of DNA elasticity in the small
force limit. We compare our results with experiments at
various salt concentrations.

2 Semiflexible chain under tension

We model DNA as a semiflexible worm like chain (WLC)
with contour length L. The chain can be parameterized
by unit tangent vector u(s) = ∂r(s)/∂s, where r(s) rep-
resents the position vector in three dimensions at the
curvilinear position s. The energy cost for bending is
characterized by the persistence length lp. The tangent
vector for WLC chain satisfies the local geometric con-
straint u2(s) = 1 for all s. The enforcement of this con-
straint makes the theory for interacting WLC extremely
difficult. Recently, it has been shown [9] that one can get
reliable results for a number of problems involving semi-
flexible chains by replacing the local constraint u2(s) = 1
by a global constraint 〈u2(s)〉 = 1. The resulting theory,
which in the absence of interactions reduces to the model
for semiflexible chains proposed by Lagowski et al. [15],
can be systematically derived from a functional integral
approach. Here we adopt this mean field model to inves-
tigate the effects of tension.

The probability distribution for isolated WLC chain,
which preserves the global constraint 〈u2(s)〉 = 1 is given
by [14,15]

P0 = e−λ
R
L
0 dsu2(s)−η

R
L
0 ds(∂u/∂s)2−b(u2

L+u2
0). (1)

The Lagrange multiplier λ = 3
2l (used to enforce the global

constraint 〈u2(s)〉 = 1) is (roughly) inversely proportional

to the Kuhn length l of the semiflexible chain, and the
constant η is related to the persistence length lp. When
the free energy of the non-interacting chain is optimized
with respect to λ we obtain λ = 9/(8lp) and b = 3/4.
These values satisfy the constraint 〈u2(s)〉 = 1.

The distribution function of the isolated semiflexible
chain under tension is given by

P0(f) =

e−
R
L
0 dsλ(s)u2(s)−η

R
L
0 ds(∂u/∂s)2+

R
f(s)·u(s)−b(u2

L+u2
0). (2)

If the applied force is constant, λ(s) has a uniform value
for all s [9]. It has been shown that this assumption gives
a self-consistent solution to the stationary condition [9].
The optimization of the free energy, in the presence of
a constant force leads to the modified relation between
λ = 2l/3 and η

1− 3
4

√
η

λ
=

f2

4λ2
· (3)

The mean square end-to-end distance of semiflexible chain
under constant tension can be obtained as

〈R2〉 =
∫ L

0

∫ L

0

〈u(s′) · u(s′′)〉ds′ds′′

= lL−l
√

2lη
3

(
1−exp

(
−
√

3
2lη

L

))
+
l2f2

9
L2. (4)

3 Self-consistent theory: small force regime

The WLC under the influence of constant tension yields
the correct dependence of the extension (along the direc-
tion of the force) of f at relatively large value of the inverse
Debye screening length. However, precise experiments on
DNA have demonstrated that the simple elasticity model
is inadequate to take electrostatic effects into account es-
pecially at small value of the f and at low salt concen-
trations. Since DNA is highly charged the response of
the chain to tension clearly depends on the ionic strength
and to the valence of the counterions. In the presence of
the external force there are four important length scales.
They are the Bjerrum length lB(= e2/4πεkBT ), the De-
bye screening length κ−1 ≡ rD, the persistence length lp,
and the Pincus length ξP = kBT/f [16]. For monovalent
ions κ2 = 8πlBρ where ρ is the salt (say NaCl) concen-
tration. The interplay between these length scales makes
the calculation of the elastic response of DNA under ten-
sion difficult. Here we provide a variational theory that
is adequate to obtain force-extension curves that are in
agreement with experiments.

In order to take electrostatic effects into account we
assume, for simplicity, that DNA molecule is uniformly
charged and each charged segment of the chain interacts
via screened Coulomb interactions. The Hamiltonian of an
isolated DNA molecule consists of non-Coulomb part H0

and the electrostatic energy contribution ∆H.

Ht = H0 +∆H. (5)
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The new probability function P [u] including the electro-
static interaction is

P [u] = P0[u] exp
(
−∆H
kBT

)
= P0[u] exp

[
−ω

∫ L

0

∫ L

0

ds′′ds′
e−κ|r(s′′)−r(s′)|

|r(s′′)− r(s′)|

]
(6)

where ω is equal to lB/A2, A is the distance between the
charges.

When the applied force is smaller than f < kBT/rD,
the orientation of the tangential vectors are not correlated
at scales r > rD, which implies that the mean square av-
erage of angle fluctuation 〈θ(s)2〉 is not small. The chain
becomes flexible on large scales and then adopts “coil like”
conformation, although the chain is still stiff on small
length scales. We use “coil-like” to imply that relatively
large excursions from rod-like conformation are possible
so that the Gaussian approximation, which would be valid
when 〈θ2(s)〉 is small, breaks down.

For this problem the Gaussian approximation (em-
ployed to treat the long range interaction) to the WLC
model is not valid [8]. This can be seen by deviations from
experiments in the extension-force curves at small forces.
(See Fig. 6 in Ref. [8].) Here we use a self-consistent vari-
ational theory to describe the effect of small force on the
conformations of DNA.

In order to estimate the size of the charged DNA un-
der tension we follow the uniform expansion method intro-
duced by Edwards and Singh [17]. Accordingly, we write

Ht = H1 +B (7)

where

B = H0 −H1 +∆H. (8)

Hamiltonian and H1 corresponds to the non-interacting
theory in which l is replaced by a effective Kuhn length l1
and ∆H is a perturbation in Hamiltonian. The appropri-
ate value of l1 should satisfy (see Eq. (4)).

〈R2〉 = l1L− l1
√
l1lp
3

(
1− e

−
q

3
l1lp

L
)

+
l21f

2

9
L2. (9)

For arbitrary choice of l1, 〈R2〉 can be rewritten up to first
order in B as

〈R2〉 = 〈R2〉1 − 〈BR2〉1 + 〈B〉1〈R2〉1 (10)

where 〈 〉1 indicates average with weight factor exp(− H1
kBT

).
Self-consistency condition requires that 〈BR2〉1 =
〈B〉1〈R2〉1 so that 〈R2〉 to first order in B coincides with
that computed using a reference.

We assume that the Kuhn length l = 2/3λ will be
replaced by l1 by the coarse graining processes in such
a way that new parameter l1 satisfies equation (4) at a

given force and persistence length lp. Therefore, we have
the following self-consistent equation:(

1
l
− 1
l1

)
l21

[
L −

√
9l lp

8
(1− e

−
q

3
l1 lp

L
+
l1
2

e
−
q

3
l1 lp

L

+
2l1
9

(βf)2L2
]

= 〈∆z2(l1)〉∆H . (11)

The right hand side of equation (11) is evaluated using

〈∆z2(l1)〉∆H = 〈z2〉 − 〈z2〉0

= −
∂2

∂k2G(k, L, f)
G(k, L, f)

∣∣∣
k=0
− 〈z2〉0 (12)

where 〈 〉0 indicate the average with weight e−H0/kBT ,
and G(r) is the Green function associated with the total
Hamiltonian

G(r, L, f) =
∫ r(L)=r

r(0)=0

D[r(s)] exp
(
−Ht

kBT

)
(13)

and its Fourier transform is

G(k, L, f) =
∫

d3r(s) exp(−ir · k)G(r, L, f). (14)

If the applied force is constant along the contour then
G(k, L, f) = G(k− iβf , L) [18]. We can obtain the mean-
square average of the end-to-end distance from G(k, L),

〈z2〉 = −
∂2

∂k2G(k, L, f)
G(k, L, f)

∣∣∣
k=0

= −
∂2

∂k2G(k, L)
G(k, L)

∣∣∣
k=−iβf

.

(15)

The correlation function in k space is obtained by per-
forming functional integral including phase factor e−ik·r.
If we consider the electrostatic interaction as a perturba-
tion, Ht = H0 +∆H, ∆H = VDH(r) = lBe−κr/r.

G(r, L) =
∫

d3k
(2π)3

〈eikr〉0 −
∑
n

β

n!
〈(∆Heikr)n〉0. (16)

We can write the correlation function G(k) ≈
G0(k, L) 1

n!

∑
n=0G1(k, L) ≈ G0(k, L) exp(G1(k, L)) un-

der the Gaussian approximation.

G0(k, L)G1(k, L) = 〈VDHeikr〉0 =

1
(2π)3

ω

2

∫
ds′′
∫

ds′
∫

d3q
〈eiq·(r(s′′)−r(s′))+ik·(r(L)−r(0))〉

q2 + κ2

= exp[−k
2l

6a
(aL− 1 + e−aL)]

ω
√
π3

16κ2

∫
ds
∫

ds′
∫ ∞

0

dα

× e−α
(

π

g1l1 + α/κ2

) 3
2

exp
(

l21g
2
2k

2

g1l1 + α/κ2

)
(17)

with

a = (
3

2lη
)

1
2

g1(s′′ − s′) =
a(s′′ − s′)− 1 + e−a(s′′−s′)

6a
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g2(s′′ − s′) =

a(s′′ − s′)− 1− 2e
aL
2 sinh (s′′−s′)a

2 cosh (L−s′′−s′)a
2

6a

where the wave vector q is associated with the momen-
tum transfer via electrostatic interaction and 1

q2+k2 is the
Fourier transform of VDH(r(s′′) − r(s′)). We have intro-
duced the dummy parameter α in order to replace three
dimensional integral with respect to q to a one dimen-
sional integral in w, The mean square average of the end-
to-end distance is

〈∆z2〉∆H =

〈z2〉0 + (2
G′0(k, L)G′1(k, L)

G0(k, L)
+G′′1(k, L))|k=−iβf . (18)

We solve equation (11) together with equations (17, 18)
iteratively to find a new coarse grained Kuhn length l1,
which is related to the persistence length via equation (3).
The correction to 〈z2〉 due to the electrostatic interaction
is expected to be always positive since electrostatic inter-
actions stiffen the chain. Therefore we would expect the
effective Kuhn length l1, which varies with salt concentra-
tion, to be larger than l.

In order to analyze the experimental measurements at
small force using our theory we need the parameters L
(the contour length), l0 (the intrinsic persistence length
of DNA), and the effective linear charge density 1/A. The
values of L and l0 may be obtained by fitting the force-
extension curve to the data of Smith et al. [1] at the mono-
valent salt concentration of 10 mM NaCl (κ−1 ≈ 3.2 nm)
using the WLC model [4]. For this condition the WLC
gives an excellent description of the data because the elec-
trostatic interactions are negligible [8,9]. The best fit is
obtained with L = 32.7 µm and with the intrinsic persis-
tence length l0 = 53 nm. The effective charge density 1/A
still remains free parameter. In this paper, we choose 1/A
in order to find the best fit with experiments. We will dis-
cuss the effect of ion condensation in the following section.
We use the Bjerrum length lB = 0.7 nm in water at room
temperature with dielectric constant ε = 80.

Before we present the results of the force-extension it
is useful to characterize the variation of the electrostatic
persistence length of DNA with κ. Here le = lp − l0, lp =
3l1/4 and l0 = 53 nm. In Figure 1 we plot le as a function
of κ. It is clear that there are two distinct scaling regimes
of behavior.

le ∼ κ−1 (κ < κx)
le ∼ κ−2 (κ > κx) (19)

where κx ≈ 0.34 nm−1 is roughly the crossover value.
The result in equation (19) requires discussion in

light of recent development in the polyelectrolyte litera-
ture [19,20]. It has been shown that both for flexible
(l0lB/A2 � 1) and stiff (l0lB/A2 � 1) chains the electro-
static persistent length scales as r2

D [19,20]. The crossover
between the two limits is quite complicated and in this
regime le can even depend sublinearly on κ [21]. In fact,
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Fig. 1. The electrostatic contribution to the persistence length
le as a function of κ. It is clear that le exhibits κ−1 and κ−2 de-
pendence in low and high salt concentration respectively. The
inset shows the dependence of the radius of gyration on the salt
concentration, which is calculated by solving self-consistent
equation (11). The value of parameters are L = 32.7 nm,
l0 = 53 nm, 1/A = 1.40 nm−1. The crossover point is indi-
cated as a cross.

it is possible that le can not be precisely determined in
the crossover regime [19]. The precise scale of crossover
has also been a point of consideration [21]. Simulations
suggest that such a crossover occurs when le ≈ l0. From
Figure 1 we note that le(κx) ≈ 70 nm which is comparable
to l0(≈ 53 nm). Thus for κ ≤ κx one expects deviation
from the OSF prediction which, we believe, is not incon-
sistent with the prediction of the recent variational the-
ories [19,20] and simulations [21]. The crossover, at least
for this DNA, occurs when le ≈ l0 [21], which is consistent
with the condition lOSF ≈ l0 [20].

In the inset to Figure 1, we plot the salt concentra-
tion dependence of the radius of gyration of DNA. In the
low salt concentration region, κ < 0.1 nm−1, the radius of
gyration Rg varies like κ−1/2 and for high salt concentra-
tion, Rg shows little κ dependence. The κ−1/2 variation,
shown in the inset to Figure 1 implies ν = 1/2 for Rg. The
implication of this calculation, for our purpose, is that in
the small κ regime le > l0 and as a result the effects of
electrostatic interaction dominate at scales of le. Thus, a
more detailed theory described here is required to describe
the small force behavior of DNA.

In Figure 2, we plot force-extension curves for DNA
molecule at 10 mM Na+, 1 mM Na+, 0.1 mM Na+ ion
concentration respectively. The fits at large forces are done
by the calculation of the angle fluctuations of the tangen-
tial vector using L = 32.7 µm and l0 = 53 nm. (See next
section.) The small force fits are done with self-consistent
mean field approximation using the same values for the
parameters L and l0.
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Fig. 2. Comparison between theoretical and experimental
force-extension curves for DNA at various salt concentrations.
(a) 10 mM Na+, (b) 1 mM Na+, (c) 0.1 mM Na+ The symbols
denote experimental results, and the dashed lines represent the
functional integral estimation for high force limit. The force vs.
extension curves for small force regime (solid lines) are calcu-
lated by numerically solving the self-consistent equation. In
panel (c) the solid line is calculated with A = 1.0 nm while
the dot-dashed line is computed with A = 1.1 nm. In all cases
L = 32.7 µm and l0 = 53 nm.

The choice of A, for which direct measurements are
not available, requires explanation. We choose the effective
charge density 1/A as 2.5 nm−1, 1.4 nm−1 and 1.0 nm−1

for 10 mM Na+, 1 mM Na+, 0.1 mM Na+ ion concen-
tration respectively. These values give the best fit to the
data. At large salt concentration (10 mM Na+), the inter-
action range (Debye radius) rD = 0.3 nm is smaller than
the size of each base of DNA. We conclude that coun-
terion condensation is not relevant in this concentration
range. If every base pair carries a charge −1e, the linear

charge density will be 2.94 nm−1 since the size of base
pair is approximately 0.34 nm. The choice of our effective
charge density 1/A = 2.5 nm−1 at 10 mM NaCl concentra-
tion indicates that most of the counterions dissociate from
the monomers on the backbone. At smaller salt concen-
tration, namely 1 mM Na+ and 0.1 mM Na+, the interac-
tion range exceeds the Bjerrum length of aqueous solution,
lB = 0.7 nm. We expect counterions are condensed in the
vicinity of DNA, which leads to a reduction in the effec-
tive charge density. According to the Manning condensa-
tion theory [22,23], the charge density larger than one per
Bjerrum length leads to counterion condensation. There-
fore we choose 1/A = 1.4 nm−1 ≈ 1/lB. We used smaller
value of 1/A for 0.1 mM concentration. However, all the
data points from experiment correspond to the rod-like
conformation even in the small force regime. We expect
the self-consistent theory to be valid even at very smaller
values of force, f ≤ 10−2 pN, and the approximate choice
of 1/A is then of the order of 1/lB.

It is clear from Figure 2 that there are two differ-
ent regimes in the chain elasticity as the applied force
increases. They correspond to the “coil-like” and rod-like
conformations respectively. At a given ionic concentration,
we can observe a plateau in the intermediate force regime.
The self-consistent mean field calculation is valid before
the onset of plateau, where “coil-like” conformations dom-
inate. Our calculations provide the correct estimation of
the chain extension when the extension z is much smaller
than the total contour length L i.e. z/L < 0.5. The mean
square average 〈R2〉−1/2 with zero force is proportional to
κ−1/2 and increases as fκ−1 as the magnitude of force in-
creases. These results agree with experiments. At smaller
ionic concentrations, the position of the plateau moves to
the smaller values of force. In the following section, we
discuss the force-extension curves for a semiflexible chain
in a rod-like conformation.

4 Electrostatic effects on stretching stiff
DNA: Large force regime

In this section, we apply the functional integral method
to obtain the force-extension relation of an intrinsically
rigid chain in the limit of large force. This regime was
considered by Marko and Siggia [8] who noted that the ef-
fects of electrostatic interactions can be absorbed into an
effective scale dependent persistence length. Here, we pro-
vide a derivation of this result using a functional integral
approach.

It appears that when a large force is applied to the
chain, the segments of the chain do not interfere with each
other geometrically, because of tension induced stiffening
occurs on scales from ξP = kBT/f . If this assumption is
valid the influence of the electrostatic interaction can be
treated simply by replacing the persistence length lp by
an effective persistence length leff

p = l0 + lOSF. With this
replacement the force-extension curve can be easily cal-
culated. Since the backbone is intrinsically stiff it follows
that the fluctuation in angle θ(s), cos θ(s) = u(s) ·u(0), is
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small, we can expand cos(θ(s)) ≈ 1+ 1
2!θ

2(s)+ 1
3!θ

3(s)+ ...
If we consider only fluctuations of the angle, the expan-
sion with respect to θ(s) guarantees the constraint of
|u(s)2| = 1. The Hamiltonian of the system can be written
in terms of θ(s) as,

H

kBT
∝ lp

2

∫ L

0

(
∂u(s)
∂s

)2ds

+
ω

2

∫ L

0

∫ L

0

ds′′ds′θ(s′′)θ(s′)G−1(s′′ − s′)

−
∫ L

0

|f(s)|
kBT

cos θ(s)ds =
1
2

∫ ∞
−∞

θ̃2(q)Q−1(q)dq

(20)

Q̃−1(q) = G̃−1(q) + lpq
2 +

f
kBT

(21)

where θ̃(q) =
√

1
2π

∫∞
−∞ eiqsθ(s)ds, and in the limit of

q/κ� 1,

G̃−1(q) =
ω

2
[(1 +

1
q2κ−2

) ln(1 + q2κ−2)− 1]

≈ ω(q/κ)2

4
− ω

6
(q/κ)4 +O((q/κ)6). (22)

Therefore, the effective persistence length leff
p can be iden-

tified with the coefficient of the quadratic term: leff
p =

lp + lOSF, lOSF = lB/4κ2A2.
The generating function Z for the theory given in

equation (20) is

Z ∝
∫
D[θ] exp

[
−ω

2

∫ L

0

∫ L

0

θ(s′′)G−1(s′′ − s′)θ(s′)ds′′ds′

+
∫ L

0

|f |
kBT

θ(s)ds

]
. (23)

The ratio of the extension to the total length 〈z/L〉 can
be obtained from the generating function Z

〈 z
L
〉 = 1− 〈θ

2(s)〉
2

= 1− 1
2
∂

∂f

∂

∂f
Z (24)

where the mean square value of θ(s) can be found from
Q̃−1(k),

〈θ2(s)〉 =
1

2π

∫ ∞
−∞

dk
∫ ∞
−∞

dk′〈θ(k)θ(k′)〉eis(k−k′)

=
1

2π

∫ ∞
−∞

dke2iskQ(k). (25)

In Figure 2 we show z/L (Eq. (24)) as a function of force.
Our results (see Fig. 2) are in very good agreement with
experimental results of Smith et al. [1] for all salt concen-
trations. In the large force regime, we find 〈z/L〉 ∝ −1/

√
f

which, of course implies, that is regime DNA does behave
as WLC [8,9]. It is not surprising that the theoretical re-
sults for large forces start deviating when z/L < 0.4, and

dramatically depart from the experimental results and
when z/L < 0.2 “coil-like” conformations dominate at
small forces. This suggests that for small force regime a
more elaborate theory, such as the one presented in the
previous section, is required.

5 Conclusions

In this paper we have considered the effects of electrostatic
interactions on the stretching of DNA. It is already well
established that the simple elastic model at high salt con-
centration gives an excellent description of the response
of DNA to tension. Furthermore, it is clear that at small
values of the concentration of salt and at small force “coil-
like” conformation become important and an elaborate
theory is required. Here we have shown that when the ap-
plied force is small, the long range interaction in DNA
molecule can be properly treated by self-consistent varia-
tional mean field approximation. Our theory gives excel-
lent agreement with experimental results in this regime.
The larger the ionic strength, the larger the overlap range
in the cross over regime from the mean field calculation
(coil conformation) to the WLC limit (stretched confor-
mation). If the screening length rD is large compared to
the total contour length L (rD/L ∼ 1), then electrostatic
interactions dominate at all scales so that the chain is ef-
fectively stiffened even when the applied force is small.
In this case, the self-consistent theory is valid only in the
limit of very small force.

One of the limitations of treating the electrostatic in-
teractions, even at the primitive Debye-Hückel level, is
that there is no easy way to choose the linear charge den-
sity 1/A. The value ofA is essentially controlled by counte-
rion condensation effects. Since the conformation of DNA
changes upon addition of salt dramatically a proper the-
ory of describing DNA elasticity should include fluctua-
tions due to counterion condensation. In the absence of
such a theory we have used physical arguments to choose
a value for A. A more elaborate theory that would treat
fluctuations on small scales of the value of A as well as
larger length scale is required to obtain the line density
independently.

It appears that in the limit of small f the self-
consistent variational theory may be adequate for all val-
ues for κ. For large value of κ and f the effects of elec-
trostatic interaction may be treated using such a scale
dependent persistence length [8]. It would be desirable to
have a unified theory that can treat both regimes, and
hence the case of intermediate values of f and κ. Such a
theory would require using a more elaborate variational
Hamiltonian, perhaps, similar to the ones used recently to
treat the persistence length of polyelectrolyte chains [19].

Despite the success of the theory outlined here it is
worth pointing out that the WLC can only explain the
force-extension curves when the counterion is monovalent.
It is only in the presence of monovalent ions that the elec-
trostatic persistence length of DNA displays the well ac-
cepted dependence on κ. Baumann et al. [10] have found
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that multivalent salt ions (counterions) have dramatically
different effects on persistence length of DNA.

By performing force measurement using laser tweez-
ers they discovered that not only valence but also the
shape of counterions profoundly affect elasticity of sin-
gle DNA molecules. In order to fully understand these
experiments effects due to the counterion condensation
should also be taken into account. For the monovalent
ions we have accounted for counterion condensation ef-
fects simply by using the mean distance between charges
A as adjustable. These observations and other findings by
Baumann et al. [10] clearly suggest that theories and sim-
ulations that go beyond the simple Debye-Hückel theory
will be required to provide a complete description of the
response of DNA to external tension.

This work was supported in part by a grant from the National
Science Foundation through the grant number NSF CHE 96-
29845.
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